A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems
نویسندگان
چکیده
Recently observed rapid climate changes have focused the attention of researchers and river managers on the possible effects of increased flooding frequency on the mobilization and redistribution of historical pollutants within some river systems. This text summarizes regularities in the flood-related transport, channel-to-floodplain transfer, and storage and remobilization of heavy metals, which are the most persistent environmental pollutants in river systems. Metal-dispersal processes are essentially much more variable in alluvia than in soils of non-inundated areas due to the effects of flood-sediment sorting and the mixing of pollutants with grains of different origins in a catchment, resulting in changes of one to two orders of magnitude in metal content over distances of centimetres. Furthermore, metal remobilization can be more intensive in alluvia than in soils as a result of bank erosion, prolonged floodplain inundation associated with reducing conditions alternating with oxygen-driven processes of dry periods and frequent water-table fluctuations, which affect the distribution of metals at low-lying strata. Moreover, metal storage and remobilization are controlled by river channelization, but their influence depends on the period and extent of the engineering works. Generally, artificial structures such as groynes, dams or cut-off channels performed before pollution periods favour the entrapment of polluted sediments, whereas the floodplains of lined river channels that adjust to new, post-channelization hydraulic conditions become a permanent sink for fine polluted sediments, which accumulate solely during overbank flows. Metal mobilization in such floodplains takes place only by slow leaching, and their sediments, which accrete at a moderate rate, are the best archives of the catchment pollution with heavy metals.
منابع مشابه
Water exploitation of Karoon River for fish culturing through monitoring and simulation systems
Heavy metal pollution dispersion simulation in rivers and predicting spatial and temporal variations of pollutants can be used to determine the precise place and to schedule water withdrawal time for drinking, agriculture, aquaculture and ecosystem studies. To study the movement of heavy metal pollution through Karoon flow model, MIKE 11 was employed fpr simulation of the flow model of Karoon R...
متن کاملWater exploitation of Karoon River for fish culturing through monitoring and simulation systems
Heavy metal pollution dispersion simulation in rivers and predicting spatial and temporal variations of pollutants can be used to determine the precise place and to schedule water withdrawal time for drinking, agriculture, aquaculture and ecosystem studies. To study the movement of heavy metal pollution through Karoon flow model, MIKE 11 was employed fpr simulation of the flow model of Karoon R...
متن کاملEffective Factors and Molecular Mechanisms of Heavy Metal Bioremediation Using Cyanobacteria
The sustainability and non-biodegradability of heavy metals, on the one hand, and the increasing environmental pollution caused by industrial wastewater on the other hand have increased the attention to heavy metal remediation. Cyanobacteria are one of the most important agents of heavy metals removal in drought and aquatic environments. Their ability to remove metals is related to various mech...
متن کاملA review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions
Carbon nanotubes (CNTs) are a novel material that exhibits good adsorption behavior toward various toxic pollutants in aqueous solution. These adsorbents have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of CNTs for the treatment of water polluted with heavy metal io...
متن کاملA review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions
Carbon nanotubes (CNTs) are a novel material that exhibits good adsorption behavior toward various toxic pollutants in aqueous solution. These adsorbents have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of CNTs for the treatment of water polluted with heavy metal io...
متن کامل